Anatomic variation in the elastic inhomogeneity and anisotropy of human femoral cortical bone tissue is consistent across multiple donors.
نویسندگان
چکیده
Numerical models commonly account for elastic inhomogeneity in cortical bone using power-law scaling relationships with various measures of tissue density, but limited experimental data exists for anatomic variation in elastic anisotropy. A recent study revealed anatomic variation in the magnitude and anisotropy of elastic constants along the entire femoral diaphysis of a single human femur (Espinoza Orías et al., 2009). The objective of this study was to confirm these trends across multiple donors while also considering possible confounding effects of the anatomic quadrant, apparent tissue density, donor age, and gender. Cortical bone specimens were sampled from the whole femora of 9 human donors at 20%, 50%, and 80% of the total femur length. Elastic constants from the main diagonal of the reduced fourth-order tensor were measured on hydrated specimens using ultrasonic wave propagation. The tissue exhibited orthotropy overall and at each location along the length of the diaphysis (p < 0.0001). Elastic anisotropy increased from the mid-diaphysis toward the epiphyses (p < 0.05). The increased elastic anisotropy was primarily caused by a decreased radial elastic constant (C(11)) from the mid-diaphysis toward the epiphyses (p < 0.05), since differences in the circumferential (C(22)) and longitudinal (C(33)) elastic constants were not statistically significant (p > 0.29). Anatomic variation in intracortical porosity may account for these trends, but requires further investigation. The apparent tissue density was positively correlated with the magnitude of each elastic constant (p < 0.0001, R(2) > 0.46), as expected, but was only weakly correlated with C(33)/C(11) (p < 0.05, R(2) = 0.04) and not significantly correlated with C(33)/C(22) and C(11)/C(22).
منابع مشابه
Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur.
Experimental investigations for anatomic variation in the magnitude and anisotropy of elastic constants in human femoral cortical bone tissue have typically focused on a limited number of convenient sites near the mid-diaphysis. However, the proximal and distal ends of the diaphysis are more clinically relevant to common orthopaedic procedures and interesting mechanobiology. Therefore, the obje...
متن کاملThe relative influence of apatite crystal orientations and intracortical porosity on the elastic anisotropy of human cortical bone.
Elastic anisotropy exhibits spatial inhomogeneity in human cortical bone, but the structural origins of anatomic variation are not well understood. In this study, the elastic anisotropy of human cortical bone was predicted using a specimen-specific multiscale model that investigated the relative influence of apatite crystal orientations and intracortical porosity. The elastic anisotropy of cort...
متن کاملThe axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.
This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...
متن کاملHeterogeneity of bone lamellar-level elastic moduli.
Advances in our ability to assess fracture risk, predict implant success, and evaluate new therapies for bone metabolic and remodeling disorders depend on our understanding of anatomically specific measures of local tissue mechanical properties near and surrounding bone cells. Using nanoindentation, we have quantified elastic modulus and hardness of human lamellar bone tissue as a function of t...
متن کاملThe Variation of Orthotropic Elastic Constants in the Female Anterior Femoral Midshaft: a Micro-finite-element Study
INTRODUCTION Computational modelling in orthopaedic biomechanics often uses continuum homogenised finite element models of the bone which require accurate definitions of its elastic properties. In this study the variation of the orthotropic elastic constants of cortical bone from the female anterior femoral midshaft were evaulated. Micro-finite-element (μFE) analysis of bone samples from 27 fem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 44 9 شماره
صفحات -
تاریخ انتشار 2011